
J .  Pluid Mech. (1981), vol. 105, p p .  451-467 

Printed in Great Britain. 
45 1 

The turbulent trailing vortex during roll-up 
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The turbulent trailing vortex forming from a rolling-up vortex sheet is considered. 
The inviscid, asymptotic roll-up of a vortex sheet is briefly reviewed, as are the effects 
to the sheet of merging by viscous and turbulent diffusion. The merged region is found 
to rapidly attain a state of equilibrium and similarity variables are used to describe it. 
The detailed distributions of circulation and Reynolds stress are seen to depend to 
some extent upon the initial spanwise distribution of circulation on the wing. How- 
ever, a tiny region which is independent of the wing circulation distribution is found to 
exist near the point of peak tangential velocity. It is suggested that this region is 
described by Hoffmann & Joubert’s logarithmic relationship. Assuming this to be the 
limiting form for the distribution of circulation near r l ,  the radius where the tangential 
velocity takes its peak value vl, an approximate form for the distribution of circulation 
is found and this is used to determine the form of the Reynolds-stress distribution. 
It is found that two modes for the decay of v1 with time are possible: one when rl is 
much less than $8, the wing semi-span, and v1 decays like t-tn; and the other when 
r1 = O(@) and vl may decay like t4(n-2); 0 < n < 1, for elliptic wing loading n N 4. 

1. Introduction 
Streamwise vorticity is generated whenever a finite wing produces lift and sheds 

from the wing to form a continuous vortex sheet. The velocity field due to the sheet 
may vary in the spanwise direction and wherever this field is singular along the sheet 
it is likely to roll up into a spiral with a continuously increasing number of turns. The 
innermost turns of this spiral become almost circular and the distance between each 
turn small enough so that diffusion blurs the discrete spiral structure and makes the 
distribution of vorticity a smooth one. We call this merged region within the spiral 
structure a trailing vortex. Furthermore, we consider the trailing vortex to be under- 
going roll-up so long as it remains surrounded by discrete arms of the spiralled vortex 
sheet; only when irrotational fluid completely surrounds the merged region is the 
trailing vortex fully rolled up. 

Dynamics require axial velocities to be present in trailing vortices (Batchelor 1964) 
and these can have an important effect on the stability of the trailing vortex system 
and play an important role in the occurrence of vortex breakdown (Widnall 1975; 
Leibovich 1978). But the persistence of trailing vortices behind lightly loaded wings 
suggests that considerable time is required before instabilities are excited and in the 
interim period, and until the vortices finally dissipate, those trailing from jumbo jets 
for example, can pose a hazard to smaller following aircraft. It is concern for this 
hazard that has prompted recent interest in trailing vortices. 

Measurements in vortices behind lightly loaded wings indicate that very close to 
t Presently, National University of Singapore, Kent Ridge, Singapore 051 1 
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the wing the peak axial velocity perturbation, u1 say, is roughly equal to the peak 
tangential velocity v1 (see Fage & Simmons 1925; Hilton 1938; Mason & Marchman 
1972). And as v1 (with light loading) is much less than the free-stream velocity U,, so 
too is ul. Under these conditions the equations of motion may be linearized and this 
has formed the basis of many papers concerning laminar and, with some ad hoc 
closure procedure, turbulent trailing vortices (Batchelor 1964; Squire 1965 ; Govin- 
daraju & Saffman 1971; Saffman 1973; and others). These papers also assume that the 
vortices are fully rolled up. 

But vortex sheets roll up asymptotically and it may be many wing spans behind the 
aircraft before the fully rolled-up condition is reached. We should like to have clear 
ideas about the behaviour of the trailing vortex system during the roll-up period and 
this prompted the work of Moore & Saffman (1973). These authors considered the 
trailing vortices forming behind a lightly loaded wing on which the boundary layer 
is laminar. But, with the high Reynolds numbers encountered on lifting wings in free 
flight, it is likely that their boundary layers, and thus their trailing vortex sheets, are 
turbulent. I n  the present article, therefore, we consider the trailing vortices under- 
going roll-up behind a lightly loaded finite wing on which the boundary layer is 
turbulent. We begin (in 9 2) with a brief review of inviscid roll-up and in 5 3 consider 
the merging process. We note that the merged region rapidly attains a st’ate of equilib- 
rium and in 94 use similarity variables to describe it. The apparent dependence of 
trailing vortices on Reynolds number is discussed in 5 5 and in 9 6 we consider the 
possibility that  trailing vortices have two modes of decay. 

2. Inviscid roll-up 
The initial strength of a vortex sheet is specified by the spanwise distribution of lift 

on the wing from which it sheds and we should like to determine the detailed motion 
of a trace of this sheet with time t ,  for t > 0, in the downstream plane z = U,t. 

If the vortex sheet is semi-infinite, has a circulation distribution which decreases 
monotonically toward one edge and contains a velocity-field singularity there, then 
the sheet will roll up into a continuous spiral. Furthermore, the trace of the spiral 
which forms (when viewed in any downstream plane) is self-similar and the radial 
distribution of circulation in the ever tightening innermost part of the spiral is asynip- 
totic to  the distribution on the originally planar sheet, but with the distance from the 
sheet edge x replaced by a,, r ,  where r is the radius from the spiral centre and a?L is the 
Betz constant. This feature was first realized by Kaden (193 1 )  and is well supported by 
numerical solutions of Kaden’s problem (see Pullin & Phillips 1981). 

To determine the motion of a finite vortex sheet with the same properties as above 
is more difficult; however Moore (1 974) and Fink & Soh ( 1978) have obtained numerical 
solutions for the case of an initially planar elliptically loaded sheet. Moore compares 
the roll-up rate of this sheet with that given by Kaden’s similarity analysis (for a 
parabolically loaded sheet) and finds that the two agree until about 50 yo if the sheet’s 
vorticity is contained within the rolled-up spiral ; after this Kaden’s result gradually 
starts to over-predict the roll-up rate. Thus, during the initial stages of roll-up behind 
a finite wing, i t  would seem reasonable to utilize the simple ideas of Kaden to describe 
the outer inviscid flow field of a trailing vortex. 

This was done by Moore & Saffman, who considered the vortices forming behind at 
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wing of span s. Assuming the wing-tip loading to be 2 I ' , ( s / ~ ) ~ - '  (0  c n c l ) ,  where 
Fa is the root circulation, the asymptotic form of the innermost spiral of the rolling up 
trailing vortex sheet is then 

where [ = (Fm/n) (s/a,,)fi-l and 0 is the angular co-ordinate. And, as 0 + 03, and it 
becomes a good approximation to replace the discontinuous vorticity field with a 
smoothed one, the tangential velocity is given by 

r = ([t/O)lI(l+n), (2.1) 

v g  N 

3. The merged region 
3.1. Diffusive merging 

At finite Reynolds numbers, vorticity diffuses, and the sheet becomes a vortex layer 
of finite, non-zero thickness. Successive turns in the centremost portions of the 
rolled-up layer merge, the spiral structure disappears and, if the radius of the vortex 
core is much greater than the diffusive length scale, an equilibrium structure ensues 
(Maskell 1962). 

Thus, we might anticipate a multi-structured core, the innermost part of which has 
effectively reached a state of equilibrium and surrounding this an annulus in which 
the turns have merged or are in various stages of merging, and an outer region, beyond 
a radius a, say, in which discrete turns of the spiral remain evident. 

3.2. Limit  of the smoothed-out region 
Now if Z(t) is the layer thickness a t  time t ,  then we might expect turbulent diffusion 
to have a length scale of O(1); while laminar diffusion has a length scale of O[(v t )$ ] .  
Moreover, in the early stages of roll-up, the thickness of the layer should be O(S), 
where 6 is the boundary-layer thickness a t  the wing trailing edge. So a t  this stage, if 
6 & (vt:), it is reasonable to expect diffusion in the region of a, to be predominantly 
turbulent. But as the sheet rolls up it is stretched laterally and I decreases, so some 
time later, when Z < (vt)*, diffusion should be predominantly viscous. 

The approximate distance between successive turns folIows from (2.1) and, if we 
require this to be small compared with the diffusive length scale, we find that, for 
laminar diffusion, the assumption of a smoothed-out vorticity distribution is valid 
provided r < [y~4t3]l/(~+Z) = a, say; and for turbulent diffusion r < [ytZ]1'(fi+2) = a, say, 
where y = (n+ 1) [/2n. Clearly the radius a,, which from (2.1) is proportional to 
[Ct]I/(n+l), must be greater than both at and a,. Moore & Saffman require that a, be 
effectively infinite compared with the radius of the viscous core (=  O[(vt)d]) ,  so for 
consistency we choose a, to be effectively infinite compared wit,h 6; a, is then greater 
than a, and a, if t & 

3.3. The behaviour of a as r + a, 
The growth of a, is explained physically as the continuous addition of turns to the 
merged vortex core. It is through this process that angular momentum, confined 
initially to the rolling-up vortex layer, is added to the merged core. This radial trans- 
port of angular momentum is equivalent to a torque, and, providingnoexternal torque 
is applied to the boundary, the change in angular momentum of the fluid within a 
circle of radius r say (which varies with time), i.e. 



454 W .  R. C. Phillips 

is equal to  the flux of angular momentum entering the circle, 

Since v, = 0, there is no transfer of mass into a circle of fixed radius and no associated 
flux of angular momentum. But as the vortex layer, and subsequently the merged 
vortex, is turbulent, neither v: nor vi are zero (except at random points in time) and 
the pertinent question is: can these fluctuations in velocity lead to  a flux of angular 
momentum into a circle of fixed radius? We note that with zero flux of angular momen- 
tum Saffman's overcirculation theorern? must apply. This theorem clearly applies 
to a fully rolled-up vortex where the outer flow field is irrotational, but in the present 
case the outer flow field is rotational. 

Now if we consider this rotational field to be composed of many vortex lines, it 
follows that a small movement in position of any particular vortex line, relative to 
the others, must change the local induced velocity field and, moreover, the simul- 
taneous fluctuations about the mean positions of a multitude of vortex lines, due to 
turbulent motions, must inevitably affect the instantaneous induced velocity field. 
So it would seem most unlikely, in circumstances such as these, that  v: and v; are 
uncorrelated. This means that random fluctuations in the radial and tangential veloci- 
ties can lead to a flux of angular momentum (albeit small), with no net transfer of mass, 
across a circle of fixed radius. That is, as r -+ a,, 

where 9 is small but not zero. Further, to be consistent with the inviscidvelocity field 
in which this flux is acting, we should expect 8 to be independent of time (at least to 
leading order). With this premise, overcirculation is extremely unlikely during the 
roll-up process; see appendix. 

3.4. Three regions within the merged core 
It is desirable a t  this point to divide the merged core into three regions (see figure 1): 

(i) The innermost part we denote region 'I, and in this region viscous effects must be 
present to bring the tangential velocity to zero on r = 0. Moreover, near r = 0, the 
rotation is close to solid-body (i.e. vo(r, t )  = rQ(t), where Q(t)  is the angular velocity); 
and to leading order = $r4dR/dt ( r  + 0 ) ,  so the shear stress p v z i s  evidently 
positive and increasing (assuming dQ/dt < 0, which is physically plausible). 

(ii) In region I1 viscous effects are likely to  be small. The tangential velocity reaches 
a maximum a t  a radius rl and then decreases. And from considerations of the transfer 
of tangential velocities by the random radial motions of small parcels of fluid, we may 
deduce that pv:; should change sign a t  some point close to, but not necessarily at ,  
r,;  we should also expect pviv; > 0 for r < r l .  

Now near r l ,  Hoffmann & Joubert's (1963) logarithmic law for circulation applies. 
Defining rl = 2nv1 r,, we may express this as 

- 

t This theorem states that overcirculation, i.e. I' > rm, will he in evidence at some stage 
during the developinent of the vort,ex; see appendix. 
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Vortex layer 

FIGURE 1. Sketch of roll-up and merging of a trailing vortex layer. 

There appears to be no rigorous derivation for (3.1) but experimental data follow it 
closely. I n  figure 2 we plot the data of Graham, Newman & Phillips (1974) in the 
co-ordinate system suggested by (3.1).  The data is for their cases B, C and D (measured 
in zero pressure gradient in a turbulent vortex generated by two half-wings in a circular 
blower tunnel): in case B a jet is superimposed on the vortex axis (u,/v, N 1 ) ;  case C 
is almost planar (u,/e, 2: 0); and, in case D, a wake is superimposed (u,/v, N - 1) .  It 
is clear that (3.1) is well supported for much of the core (0.9 < r/r l  < 2) both with and 
without axial velocities present. This is not to say that (3.1) actually describes the 
data over all of region I1 but that the data fall close to (3.1); we shall return to this 
pointin $4.4.  

(iii) I n  region 111 the closely spaced turns of the spiral have merged, or are in the 
process of merging, by diffusion (both viscous and turbulent). Since the Reynolds 
number is very high, we have assumed that the merging process has served 
simply to smooth out the discontinuities in the inviscid velocity distribution, while 
leaving its overall form unaltered from ( 2 . 2 ) .  I n  this region, p v x  tends to  zero like 
the inverse square of radius, presumably from below; see $ 3.3. 

Now we should expect a gradual change from one region to  the next, but for the 
purpose of analysis it is desirable to treat the three regions separately. We therefore 
assume an interface of radius ri separating regions I and 11, and an interface of radius 
Q separating regions 11 and 111. We attempt, to  define these radii in $4.  
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4. Analysis of the merged region 
4.1. Formulation and solution 

I n  analysing the region bounded by a,,, we assume that the viscous stresses within 
region I are effectively confined to a region of radius O(vt)t < rl and that the axial 
velocity perturbation, while dynamically necessary, is small compared with U,. The 
fluid is incompressible. 

Consider then a set of polar co-ordinates ( r ,  8, z )  where the origin 0 is the vortex 
axis, r is the radius from the axis and z is the distance downstream of the wing. The 
velocity components are then v,, vg and U, + v, in the r ,  8 and z directions respectively. 
Within the bounds of the light-loading approximation, v,/U, < 1,  we can examine 
the core region of the vortex using approximations of the boundary-layer type. So, 
assuming axial symmetry of the vortex core, and taking a reference frame moving 
with U,, we may write the tangential momentum equation 5s 

The boundary conditions for the vortex core are that, a t  r = 0, v, = 0 and @;, = 0; 
and, as r / r l  -+ co, v, and vx should match with the limiting form of the inviscid 
solution. That is, 

(4.2) v* - - ' and v:v;- -p ( r  -+ co). 9 - 
rn 

As equation (4.1) is parabolic, we require initial conditions on v, and Consistent 
with the boundary-layer approximation, we obtain these by assuming that (4.2) 
holds a t  t = 0. so that 

9 
vg(r ,  0) = - and vivi(r, 0) = - - rn r2' 

- 5 

We seek a solution to (4.1) by the method of separation of variables. Introducing 
thenon-dimensional variable 7 = ( r / r r ( t ) )2  (0 < 7 < co) and the dimensionless functions 
@ ( q )  and G ( q ) ,  which represent the vorticity and Reynolds stress respectively, we 
write 

(7, t )  = H(t)J @(7) drl (4.3) 

(4.4) 

?t 
and 

where H(t )  is a function to be defined and @(t )  = vH(t)/nr:(t). Further, writing 
7 = -2P/A, ,  we may express (4.1) as 

a (q, t )  = @(t)  G ( r ) ,  

For self-preserving flow A ,  and A ,  are constants. 
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The general solution of equation (4.5) follows once we define a particular integral 
as p + -00, the W of (4.5).  First, noting that the leading term in G(p) goes like 

asymptotics of (4.5) show that 

@ J ( p )  N A( - P ) ( A i - - 2 4 ) / 2 4  as /j' + -00, 

where A is a constant provisionally unknown. Second, since the differential equation 
has a regular singular point a t  p = 0, if we require W ( 0 )  = 0, the function W ( p )  is 
uniquely defined. 

Now from the physics of the problem, the boundary and initial conditions require 
that 

@(p) - *( 1 - n) &( -/3)3(-1-n) as p + - 00, (4.8) 

where Q is a constant readily found from (2.2) and 

Further from (4.5) 

So, comparing (4.8) with (4.9), we require that 

@(p) - J (  - /~)(AI-'AZ)/~AZ &S p + - 00. 

AJA,  = 1 -n  

and J = i( 1 - n) Q .  We must now choose A such that 

(4.9) 

(4.10) 

.A = *(l--?&)&- $0 
r($(l -n))'  

where F ( i (  1 - n))  is the gamma function. 
We have implicitly assumed in (4.10) that both A,  and A ,  are positive: their sign 

does not affect the mathematics but has physical implications regarding the vortex 
growth rates, and we shall discuss this in 3 6. The general solution may now be written 
as 

@,(P) = @nJ(P)+$o,F1(Hn+ 1); 1 ;Ph  (4.11) 

where ,F, is a confluent hypergeometric function of the first kind (Slater 1960). We 
shall discuss equation (4.11) in 5 4.3 and in 3 4.7 we determine @;. 

4.2. The vortex growth rates 
As both A ,  and A,  are constant, equations (4.6) and (4.7) are readily integrable, giving 

and 
(4.12) 

(4.13) 

And, as it can be shown that I',(t) = N[2vA,t]B('-n~ ( N  = constant), it is clear that 
H ( t )  is proportional to I',(t). Moreover, with no loss of generality, we can take the 
constant of proportionality to be unity. 

4.3. Discussion of theory and experiment 
Although @i is unknown, we can still deduce the overall behaviour of (4.11). First, 
it  is likely to be dependent upon the value of 72: this is reasonable in view of the fact 
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FIGURE 2. Distribution of K ( 4 )  in the turbulent trailing vortex. Data of Graham et al. (1974) in 
sequence (see text) B, C, D :  *, f ,  m, z / c  = 45; 0, D, 0, z /c  = 78; @,w, X ,  z / c  = 109. 

that the outer boundary condition on the tangential velocity is n dependent, and in 
light of this we might expect a family of similarity curves, each representative of a 
different value of n. Moreover, the similarity solution should embrace all of regions I, 
I1 and 111, and should reproduce (in somewhat more detail) the behaviour we anti- 
cipated for each. 

The experimental data for K ( 9 ) t  differs on two counts however: first, only one 
curve is apparent through the collapsed data and, second, collapse is only evident in 
regions I and 11. 

The first is consistent, because the wing loading in all the experimental cases (in 
figure 2) was effectively constant with n 2: 2. But the data in region I11 should also 
collapse about one curve and from figure 2 this does not appear to be the case. 

Now, although the measurements given in figure 2 were taken in vortices shed from 
same wing, the initial conditions under which they shed differ (because of an imposed 
axial velocity perturbation, see 3 3.4). And while velocity perturbations in the axial 
direction do not appear to affect the similarity form reached by the vortex- a t  least 
for ~ $ 7 ~  < 1 -it apparently does affect the rate with which the vortex attains this 
form. This is suggested in figure 4: for if we consider figure 4(a),  which shows the case 
for ul/ztl N 0 at three downstream stations, we see that the data collapse in regions I 

t The data are plotted in figure 2 as K(4)  = r(q, t) /r1(t)  and, as we can see from (4.3), 
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FIGURE 3. Non-dimensional tangential velocity distribution in trailing vortex. Data of Graham 

et al.; symbols as in figure 2. 

and 11, but in region 111, appear to be tending toward collapse only a t  large q( 2: 25). 
I n  figure 4(b) however (which shows the corresponding data for a vortex within 
which ul/vl 2: - 2) the data does collapse over the three regions, and it seems reason- 
able to suggest that in this case the vortex has reached its complete similarity form. 

Now the physical development towards this form is reached in two stages: one is 
the merging of the spiral turns near a, and the other is the development and expansion 
of the inner equilibrium region. So, between these two regions that have reached their 
equilibrium state, lies an annulus of fluid still in the process of finding equilibrium. 
Thus, if we consider figure 4 ( c ) ,  we might expect the final stages of the progression to 
the complete similarity form to be much like that indicated by the dotted curves, the 
final form being a solid curve, and this behaviour is consistent with the available data. 

4.4. Form of the solution near q = 1: region 11 
Now (4.11) implies a family of similarity curves but we must note that in the vicinity 
of 7 = 1 there is a region (although its extent is probably small) through which all of 
these curves overlap. This follows from the constraints on K(q) a t  q = 1,  viz. that 
K(1) = 1 and d K / d y  = f r .  Thus, as the solution for K(7)  in this tiny region is inde- 
pendent of both n and a,, the region is truly universal. 

The logarithmic law satisfies both constraints a t  y = 1 (see (3.1)) and, according to 
Hoffmann & Joubert, it is universal. But, if the log law is a true description of the 
solution for K(q) a t  q = 1, we must think of it only as the limiting form for K ( q )  in the 
vicinity of 7 = 1, t o  which each of the similarity solutions asymptotes, rather than 
the actual solution for the whole of what we have called region 11. The scatter in 
experimental data overshadows this point and lead to the reasonable, but mistaken, 
impression that the logarithmic law describes a much larger region of the vortex core 
than in fact it does. In view of this, we now redefine region I1 to be the region in 
which K(q)  is within (say) 1 of that described by the log law. Furthermore, we may 
exploit the known behaviour of K f q )  near 7 = 1 to help determine approximate 
solutions for K(7) in regions I ant1 111. 
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4.5 Region I 
As the series form of (4.1 1 ) is known, we may write? 

K ( r )  = 54)T-54r2+$75zr3- . . .~  (4.14) 

where q51 and $752 are constants which, we presume, are dependent in some way upon n. 
And, as eirculation increases almost logarithmically with radius near q = 1, we state 

K ( r )  4 In (7 --f 1 ). (4.15) 
Our aim is to match (4.14) to (4.15) at 7 = r i .  

Ideally, this would imply that both KI and K" are continuously differentiable a t  
7 = ri. But the only function, defined in 0 < r < yi ,  that satisfies this condition, is the 
analytic continuation of 4ln ( e 2 r ) ,  and to force this to be finite a t  KI(0) leads to non- 
unique coeficients. 

t This follows from the complementary function 
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We choose a solution for region I ,  therefore, that is differentiable only SO far as is 
necessary to satisfy the more important physical properties a t  7 = vi, that  is, we match 
the circulation, vorticity, gradient of vorticity and gradient of the gradient of vortirity 
a t  the interface. This permits us to solve for yi and the first three coeficients of 
q5j (j = 0, 1, ...). We write then 

K1(7) = $ 0 7  - $ 1 ~ '  + $zr3, (4.16) 

and find that the coefficients are 

and 
$o = 1.7720, = 1.0467, = 0.2747, (4.17) 

vi = e-'6 2: 0.8465. 

Equation (4.16) generates a plausible curve which passes close to the data. (see 
figures 2 and 3) and in fact also describes region I1 quite well [in the range 0.5 < rl < 1.3 
(4.16) is within 1 %  of (3.1)]. Moreover, q50 is near the experimental value of 1.83 given 
by Hoffmann & Joubert. But (4.16) contains no direct n dependence and the general 
solution implies that  it should be n dependent. In  view of the close fit to the data, 
therefore, we must assume that the solution we have found is close to that for the 
case n N 2, although it is likely that the circulation distributions in regions I and II 
are, in any case, only weakly n dependent. 

4.6. Region I I I  
I n  region I11 we are, by definition, approaching the limit of the domain in which the 
rolled-up spiral of the vortex sheet can be treated as a continuum, and the spiral sheet 
here is still under the influence of the initial conditions imposed by the wing. 

and ulti- 
mately merge with the asymptotic form for @ in region 111. But the data imply that 
the transition is somewhat abrupt [see figure 4(b)] and that the asymptotic form is 
reached almost immediately. Thus we could introduce a thin buffer layer to bridge 
the solution from region I1 to the asymptotic solution and this together with the 
asymptotic solution would approximate the actual solution in region 111, and ensure 
continuity of circulation, wrticity etc. I n  doing so, however, we again suffer the prob- 
lem of trying to force In (7) to be analytically continuous, only this time to infinity 
rather than zero. I n  view of this and the rapid transition to the asymptotic form, we 
assume simply that the asymptotic solution for circulation is valid to T , ~ .  This then 
defines our solution for region 111. Thus from (2.2), 

We should expect the actual solution for @:I1 to deviate slowly from 

K"'(7) - $:,s(l-.) (7 + a), (4.18) 

where $1 = (2I',/N) (S/CL.,)*-~, And by matching (4.18) to (4.15) a t  7 = vs, we find 

4.7. T h e  Reynolds-stress distribution 
Equations ( 4 . 1 ~ 4 ,  (4.16) and (4.18) comprise a piecewise-continuous solution for 
K ( y ) ,  and thus @(7), for all 7 [y-aK(y) is plotted in figure 3 and O(7) in figure 51; and in 
determining this solution no assumptions have been made regarding the nature of the 
turbulrnt shear stress. So, as the only unknown in (4.1 1 )  is the particnlnr i t l t ~ g ~ ~ l  a):, 
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(which represents the Reynolds stress) we can now solve for it. I n  terms of G,(7;)) 
(see (4.4)), we find that, in region I (t'o second order), 

c12 

(0 < 7 < T i ) ;  (4.19) 

(4.20) 

2 ( i 440 (1+  n) - + ( -  &42$1(3 +n) + 2AJ r2 +3/- +Cii  

in region 11, 

(Ti < T 6 rls); 
In (7) + c,, + c,, G!/(7)  2: +A2(%- 1 )  [In (7) - 11 - - 

211 rl 
and, in region 111, 

GLI'(7) -1 24m(l+n)r(-~-1)!2+632+c~1 ( T s <  7 -=a); (4.21) 
rl 

whereC,, = C,, = C,, = 0, 

c,, = In (To @,(n - 1) [In (Ti) - 11 +[*A2$,( 1 + n) - $11 7i 
27 i 

2 c 2 2  + [-i$A2$1(3+ n) + 242) ~i --, 
Ti 

C22 = i5A2(n- 1 )  ~ i -  4 ++In (Ti) - [;BA,$,(1+ n)  - $11 7:- [-itA2$1(3 + n) + 4421 ~f 
and 

c32 = v,(BA,(n - 1) [In (7s) - 11 - In - (7s) + &p( 1 + n) 72-n-1)/2 + c,, + c 21}. 
211s 7 s  

Note here that, while the expressions for vorticity, circulation and tangential 
velocity in regions I and I1 are independent of n, the expressions for G(7) are not. 
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FIGURE 7 .  Comparison of C70.,L(q) with experimental data. Data of Graham & Phillips (1975) 
averaged over inward and outward traverse; 0, z / c  = 109, case B ;  a, z / c  = 109, case C; 
A,z/c = l09,case D. 

This means physically that, although the vorticity distribution may have reached a 
form virtually independent of initial conditions, the ReynoIds stress has not. This is 
not unusual for developing self-preserving flows (see Wygnanski & Fiedler 1969). 

The function Q,(v) is plotted in figure 6 for values of n from 0-2 to 0.8 with A ,  = 50 
and in figure 7 we compare the 2i)L('I data of Graham & Phillips (1975) with G,,,,5(v) 
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and A ,  = 50. The distribution of Reynolds stress is close to what was anticipated in 
3 3.4. 

5. Reynolds-number dependence? 
According to the principle of Reynolds-number similarity in free turbulent shear 

flows, the motion of the large-scale (energy-containing) eddies is essentially inviscid, 
and so independent of Reynolds number (Townsend 1976). This means that the eddy 
viscosity, if suitably non-dimensionalized, must be independent of Reynolds number 
and hence time and distance downstream, although of course it may vary in the cross- 
stream direction. 

The turbulent trailing vortex data summarized by Owen (1970)) however, indicate 
that the eddy viscosity (defined by him as r,2/4t) varies by two orders of magnitude 
over the Reynolds-number range lo3 to lo7, implying either a fallacy in the foregoing 
reasoning, or (as seems more likely) an inappropriate expression for the eddy viscosity. 
Having determined the distribution of Reynolds stress throughout the vortex, we 
are now in a position to determine the approximate form of the eddy viscosity; this 
may then provide, a t  least, a partial explanation for its apparent dependence on 
Reynolds number. 

Following the convention of replacing v, the molecular viscosity, by vE, an apparent 
one, we find 

The right-hand side of (5.1) is independent of time, implying that vE is a function of 
7 only; it is also independent of v, implying that the eddy viscosity is independent of 
Reynolds number. Both results are compatible with the principle of Reynolds-number 
similarity. Furthermore, the distribution of vE/v is dependent upon the initial condi- 
tions n and A, [via a(?)]. Now the physical meaning of n is clear, but what does A ,  
represent? We know that A, is a dimensionless constant (= r,2/2vt) and that with an 
equilibrium structure A, 9 1. Moreover +"A, is what Owen called the eddy viscosity 
and it is this parameter which varies with Reynolds number, but why? 

To provide a partial answer to this question, consider the shedding process from the 
wing and recall that the order of the thickness of the trailing-vortex layer is initially 
that of the boundary layer a t  the wing trailing edge. So the size of the initial vortex 
core which forms, and in consequence sets A,, depends strongly upon 6 near the tip 
of the wing. As &is affected by Reynolds number (and other parameters such as wing 
plan form, twist and loading etc.) it  must finally be reflected in the value of A , ;  hence 
the apparent dependence on Reynolds number. 

We may conclude, therefore, that the turbulent trailing vortex does conform to the 
principle of Reynolds number similarity for free turbulent shear flows and, moreover, 
that  Reynolds number effects are reflected in the parameter A,. We may also note that 
accurate a priori determination of A ,  appears somewhat difficult, although, as we 
shall see in § 6, it  may readily be determined experimentally. 
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FIGURE 8. Downstream variation of peak tangential velocity. Data of McCormick et al. (1968) : 

0, Army 0-1 aircraft; 8, Cherokee aircraft. U ,  = 132 f t  5-l. -, present theory. 

6.  Discussion 
I n  $4.1 we assumed that both A ,  and A ,  are positive, and, while it is clear that A ,  

must be positive (if r,  is increasing with time), the sign of A ,  is not nearly as obvious. 
With both constants positive, the resulting growth rates are r, cc th and 

v, cc t-Bn. (6.1) 

Thus for a delta wing, where n is only slightly greater than zero, we see that v, will 
decay very slowly. On the other hand, with A ,  < 0 and A ,  > 0, then A J A ,  = n- 1 ,  
yielding 

For the same delta wing, (6.2) indicates that v, would decay almost inversely with 
time, and the data of Bisgood, Maltby & Dee (1971) support the latter. With A ,  < 0, 
however, we cannot satisfy the assumption that 5 is invariant with time; indeed, if 
A ,  is negative, then 5 must vary with time, like tn-1. But, with A ,  > 0, we do satisfy 
the assumption on 5. This presents an apparent anomaly, and in answer we suggest 
the following. 

In the early stages of roll-up, when the two vortices are small compared with the 
wing span ( r l  < 4s) and their influence upon each other is negligible, 5 must be inde- 
pendent of time. In  this situation, the theory can be valid only if A ,  > 0. Some dis- 
tance downstream, however, where the vortices are no longer small compared with the 
wing span, their influence upon each other can cause 5 to be time dependent; although 
it is not obvious that its dependence will be of the form t8-l. With this supposition, 
the theory is then valid only if A ,  < 0. 

We suggest therefore that there can be two modes of decay in a rolling-up turbulent 

0, cc t i (%-2) .  (6.2) 



466 11'. R. C. Phillips 

trailing vortex: in the first mode r l  < 4s and v,decays liket-4%; and, in the second mode, 
rl = 0(&s) and w1 decays (perhaps) like t:(n-2).Two modes of decay are in fact hinted a t  
by Bisgood et al. who suggest that  their delta wing data imply that v1 asymptotes to 
t-' only after some time (about forty spans behind the wing). 

Now if the decay remains in mode 1 for most of the roll-up (something not un- 
reasonable to expect behind a high-aspect-ratio rectangular wing), (6 .1)  suggests that 
for large time (for any n, 0 < n < 1) a plateau region of very slow decay will result. 
This plateau region was first inferred from McCormick, Tangler & Sherrieb's (1968) 
data by Nielsen & Schwind (1971). We plot this data in figure 8 and scribe onto i t  
(6 .1)  assuming n = 0.5 (elliptic loading).? The agreement is encouraging, but i t  is 
questionable to use a constant value of n over such a time scale. 

The simplicity of a single parameter n to describe the form of the rolling-up vortex 
sheet is attractive in an analysis such as the present but, as Moore points out, Kaden's 
model overpredicts the roll-up rate once about half of the sheet's vorticity is con- 
tained within the spiral. For the latter part of the rolling-up process then, n must 
become a weak function of time, rendering the analysis valid only in the quasi-steady 
sense. This is perhaps not surprising physically, as the vortex sheet, with time, must 
eventually forget the initial conditions which led to its development, although, for 
practical purposes, the error introduced by assuming n to remain constant is probably 
no greater than the error arising from the uncertainty in the value of A, .  

I am indebted to  Dr M. R .  Head and Professor D. W. Moore for their many helpful 
suggestions during the preparation of this paper. This work was supported by Rolls 
Royce ( 197 1 ) Ltd. 

Appendix. Saffman's theorem and overcirculation during roll-up 
Writing aI'/at as a(r- r,)/at, substituting into (4. l ) ,  integrating with respect to 

r between 0 and a, and then with respect to t ,  we obtain, after dividing throughout by 
r ;  > 

(A 1)  
~ q r , - r )  v ( 1  +n)Zt 2nJ@(t) dt A ,  '.-J - dq = + +- 

r: ' I ' O M  0 2r, 2r: r0 e 
where To = 27r[ak-n and A ,  is a dimensional constant. 

For the fully rolled-up vortex a, -+ 00, I?, -+ I', and 9 = 0; moreover, if rl is growing 
faster than (vt)B then the right-hand side is decreasing, implying that a t  large time, 
r > I', over some 7 (Govindaraju & Saffman 1971). For the rolling-up case, rl is not 
growing faster than (vt)*. Substituting for rl, the right-hand side of (A 1)  becomes 

Since A ,  9 1, we can ignore the first term and if 19 is independent of time the second 
term becomes a constant equal to nS/I?,,vA, ( =  nB, say). 

Now for overcirculation to  occur the sum of (A 2 )  must be less than 6, so (noting 

-f A t  2500 feet downstream. McCormick et al. give vl 2 22 f t  s-l and r ,  N 5 ft  (U ,  = 132 f t  
(froni (6.1)),  we see that ,  a-1); therefore A, = 4125 (from (4.12)) and a s  w 1  = constant X T ;  

v, 2 160z-4.  
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that there can also be a contribution from the third term if A ,  + 0) overcirculation 
is excluded providing B 2 1/6n or G is 2 &A2K(y)q-1. 

As the data given in figure 7 suggests strongly that G does equal, or exceed, 

&A2K(y)y-l  as y + y 0  (for A ,  N 50 and K ( y )  2: l ) ,  

i t  would seem that overcirculation is most unlikely during the roll-up process. 
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